Combinación lineal:

Dado un conjunto de vectores $\vec{u}, \vec{v}, \vec{w}$, decimos que el vector \vec{a} es **combinación lineal** de $\vec{u}, \vec{v}, \vec{w}$ si existen α, β, γ tal que $\vec{a} = \alpha \cdot \vec{u} + \beta \cdot \vec{v} + \gamma \cdot \vec{w}$

Conjunto de vectores linealmente dependiente:

Dado un conjunto de vectores \vec{u} , \vec{v} , \vec{w} , decimos que es un sistema **linealmente dependiente** si uno de los vectores del conjunto se puede poner como combinación lineal de los otros, es decir, si por ejemplo, si existen α , β tal que $\vec{w} = \alpha \cdot \vec{u} + \beta \cdot \vec{v}$

Conjunto de vectores linealmente independiente:

Dado un conjunto de vectores $\vec{u}, \vec{v}, \vec{w}$, decimos que es un sistema **linealmente independiente** si ninguno de los vectores del conjunto se puede poner como combinación lineal de los otros. Otra forma de decirlo es que son linealmente independientes **si la única forma de conseguir el vector** $\vec{0}$ como combinación lineal de los vectores $\vec{u}, \vec{v}, \vec{w}$ ($\vec{0} = \alpha \cdot \vec{u} + \beta \cdot \vec{v} + \gamma \cdot \vec{w}$) es con $\alpha = 0$, $\beta = 0$, $\gamma = 0$

Sistema de generadores:

Decimos que un conjunto de vectores forma un **sistema de generadores** del espacio \mathbb{R}^2 si con ellos podemos conseguir, a base de combinaciones lineales, TODOS los vectores del espacio \mathbb{R}^2 . Decimos que un conjunto de vectores forma un **sistema de generadores** del espacio \mathbb{R}^3 si con ellos podemos conseguir, a base de combinaciones lineales, TODOS los vectores del espacio \mathbb{R}^3 . Y así sucesivamente...

Base:

Decimos que un conjunto de vectores forma una **Base** del espacio (\mathbb{R}^2 , \mathbb{R}^3 ,...) si son sistema de generadores y además es el conjunto más pequeño que es sistema de generadores.